Cu-Mo2C/MCM-41: An Efficient Catalyst for the Selective Synthesis of Methanol from CO2

نویسندگان

  • Xiaoran Liu
  • Yingquan Song
  • Wenhao Geng
  • Henan Li
  • Linfei Xiao
  • Wei Wu
چکیده

Supported molybdenum carbide (yMo2C/M41) and Cu-promoted molybdenum carbide, using a mechanical mixing and co-impregnation method (xCuyMo2C/M41-M and xCuyMo2C/M41-I) on a mesoporous molecular sieve MCM-41, were prepared by temperature-programmed carburization method in a CO/H2 atmosphere at 1073 K, and their catalytic performances were tested for CO2 hydrogenation to form methanol. Both catalysts, which were promoted by Cu, exhibited higher catalytic activity. In comparison to 20Cu20Mo2C/M41-M, the 20Cu20Mo2C/M41-I catalyst exhibited a stronger synergistic effect between Cu and Mo2C on the catalyst surface, which resulted in a higher selectivity for methanol in the CO2 hydrogenation reaction. Under the optimal reaction conditions, the highest selectivity (63%) for methanol was obtained at a CO2 conversion of 8.8% over the 20Cu20Mo2C/M41-I catalyst.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfunic Acid Modifired MCM-41 Mesoporous Silica as an Efficient Nano-Catalyst for Synthesis of amides and lactams from Oximes Via Beckman Rearrangement

Mesoporous MCM-41 silicas anchored with sulfonic acid (–SO3H) groups (denoted MSN-SA) via postsynthesis modification are very effective for the Beckman rearrangement. A simple and convenient procedure for conversion of a variety oximes to their corresponding amides and lactams has been developed. The reaction was carried out in the presence of MSN-SA as the catalyst. The best results for conver...

متن کامل

Highly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions

In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.

متن کامل

Highly efficient multicomponent Biginelli’s synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by Al-MCM-41 under solvent-free conditions

In this study, an efficient and green process for the synthesis of dihydropyrimidin-2(1H)-ones from aromatic benzaldehydes, ethyl acetoacetate and urea using Al-MCM-41 as heterogeneous catalyst and microreactor under solvent-free conditions has been developed. The advantages of this method are easy work-up procedure, regeneration of the catalyst, clean and neutral reaction conditions.

متن کامل

An efficient green synthesis of highly substituted imidazoles catalyzed by Al-MCM-41 nanoreactors

Al-MCM-41 nanoreactors is found to be a remarkable efficient catalyst for one-pot multicomponent cyclocondensation of benzil, aniline or ammonium acetate and aromatic aldehydes for the synthesis of polysubstituted imidazoles under solvent-free conditions. The reaction was efficiently promoted by 10 mg nano-Al-MCM-41 and the heterogeneous catalyst was recycled for four runs in this reaction with...

متن کامل

Theoretical study of catalytic reduction of CO2 with H20 by BOC-MP method

Bond-Order Conservation-Morse Potential (BOC-MP) method is used to carry out the calculationon the CO2+ H20 system. One of the best catalysts for methanol synthesis in catalytic reductionof CO2 with H2O is Cu/ZnO/A1203 whose surface is supported by with some amount of Pd orGa. Reduction of CO2 with H20 on Cu will result in methanol formation; while on Ni will lead tomethane formation. In the me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016